Whisker movements evoked by stimulation of single motor neurons in the facial nucleus of the rat.

نویسندگان

  • Lucas J Herfst
  • Michael Brecht
چکیده

The lateral facial nucleus is the sole output structure whose neuronal activity leads to whisker movements. To understand how single facial nucleus neurons contribute to whisker movement we combined single-cell stimulation and high-precision whisker tracking. Half of the 44 stimulated neurons gave rise to fast whisker protraction or retraction movement, whereas no stimulation-evoked movements could be detected for the remainder. Direction, speed, and amplitude of evoked movements varied across neurons. Protraction movements were more common than retraction movements (n = 16 vs. n = 4), had larger amplitudes (1.8 vs. 0.3 degrees for single spike events), and most protraction movements involved only a single whisker, whereas most retraction movements involved multiple whiskers. We found a large range in the amplitude of single spike-evoked whisker movements (0.06-5.6 degrees ). Onset of the movement occurred at 7.6 (SD 2.5) ms after the spike and the time to peak deflection was 18.2 (SD 4.3) ms. Each spike reliably evoked a stereotyped movement. In two of five cases peak whisker deflection resulting from consecutive spikes was larger than expected when based on linear summation of single spike-evoked movement profiles. Our data suggest the following coding scheme for whisker movements in the facial nucleus. 1) Evoked movement characteristics depend on the identity of the stimulated neuron (a labeled line code). 2) The facial nucleus neurons are heterogeneous with respect to the movement properties they encode. 3) Facial nucleus spikes are translated in a one-to-one manner into whisker movements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

اثر تحریک الکتریکی هسته رافه خلفی بر پاسخ برانگیخته نورون‌های لایه IV و V‌‌‌ قشر بارل (بشکه‌ای) در موش صحرایی

Effect of the Dorsal Raphe Nucleus Electrical Stimulation on Evoked Response of the IV Layers and V Barrel Cortical Neurons in Rat M.R Afarinesh MSc , V. Sheibani PhD , R. Farazifard MSc 1, M. Abasnegad PhD , A. Shamsi zadeh MSc Received: 17/09/06 Sent for Revision: 13/03/07 Received Revised Manuscript: 13/06/07 Accepted: 27/06/07 Background and Objective: Seretonergic pathway is one of the neu...

متن کامل

Optogenetic Stimulation of Cortex to Map Evoked Whisker Movements in Awake Head-Restrained Mice

Whisker movements are used by rodents to touch objects in order to extract spatial and textural tactile information about their immediate surroundings. To understand the mechanisms of such active sensorimotor processing it is important to investigate whisker motor control. The activity of neurons in the neocortex affects whisker movements, but many aspects of the organization of cortical whiske...

متن کامل

The effect of ibotonic acid lesion of the nucleus basalis of Meynert (NBM) on the response of cortical neurons in the rat barrel cortex

In the present study, the effect of NBM lesion on the temporal characteristics of response integration evoked by multiple whisker stimulations in the barrel cortex of rats was studied. Nucleus basalis of Meynert (NBM) projects to widespread areas of the cortex and provides the major cholinergic input (80%) to the cerebral cortex. In this study we examined the effects of NBM lesion on the respon...

متن کامل

The effect of ibotonic acid lesion of the nucleus basalis of Meynert (NBM) on the response of cortical neurons in the rat barrel cortex

In the present study, the effect of NBM lesion on the temporal characteristics of response integration evoked by multiple whisker stimulations in the barrel cortex of rats was studied. Nucleus basalis of Meynert (NBM) projects to widespread areas of the cortex and provides the major cholinergic input (80%) to the cerebral cortex. In this study we examined the effects of NBM lesion on the respon...

متن کامل

Effect of phasic electrical locus coeruleus stimulation on inhibitory and excitatory receptive fields of layer V barrel cortex neurons in male rat

Introduction: It is believed that Locus Coeruleus (LC) influences the sensory information processing. However, its role in cortical surround inhibitory mechanism is not understood. In this experiment, using controlled mechanical displacement of whiskers we investigated the effect of phasic electrical stimulation of LC on response of layer V barrel cortical neurons in anesthetized rat. Methods: ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 99 6  شماره 

صفحات  -

تاریخ انتشار 2008